Уравнения математической физики - все книги по дисциплине. Издательство Лань
Сборник задач предназначен для практических занятий по уравнениям математической физики. В нем рассматриваются основные виды задач, возникающих при изучении дифференциальных уравнений в частных производных, и методы их решения. Каждый раздел содержит теоретическое введение, несколько задач с решениями, которые иллюстрируют применение основных методов, и большой набор задач для самостоятельной работы студентов.
Для студентов высших учебных заведений, обучающихся по направлениям «Прикладная механика» и «Техническая физика», а также студентов других инженерно-физических специальностей.
Издание предназначено для студентов, приступающих к изучению дисциплин, относящихся к теоретической физике и обучающихся по направлениям подготовки, входящих в УГС: «Математика и механика», «Физика и астрономия», «Физико-технические науки и технологии», и другим физико-математическим и инженерно-техническим направлениям подготовки и специальностям, а также для специалистов, которые могут использовать издание в качестве справочного пособия.
В книге представлены современные методы математической физики, направленные на решение прикладных задач. Широко используется аппарат обобщенных функций. В решениях задач широко используются функции Грина для линейных дифференциальных уравнений в частных производных второго порядка. Большое внимание уделяется методам, основанным на специальных функциях, входящих в решение двух- и трехмерных задач. Весь теоретический материал иллюстрируется примерами численной реализации полученных аналитических формул. Книга сочетает аналитические методы математической физики и методы вычислений, использующие современные компьютерные пакеты, например Mathcad, Matlab, Mathematica и др. Графические иллюстрации, построенные на основе найденных зависимостей, позволяют получить детальное представление о качественных особенностях решений. Рассмотрен широкий круг задач, представляющих методический и практический интерес.
Книга предназначена для студентов старших курсов, обучающихся по специальностям «Физика», «Прикладная математика». Книга может быть полезна для научных работников, инженеров и других специалистов в области теоретической, прикладной физики и прикладной математики.
В книге изложено применение аппарата интегральных уравнений (ИУ), систем линейных алгебраических уравнений (СЛАУ) и систем линейно-нелинейных уравнений (СЛНУ), а также программных средств системы MatLab к решению ряда прикладных задач иконики (восстановления изображений с помощью компьютеров), спектроскопии и томографии. Изложены прямые и обратные задачи восстановления искаженных (смазанных, дефокусированных, зашумленных) изображений, спектроскопии (восстановления непрерывных и дискретных спектров) и двух типов томографии: рентгеновской компьютерной томографии (РКТ) и инфракрасной томографии (ИКТ). Обратные задачи описаны в основном интегральными уравнениями Фредгольма I рода, задача решения которых некорректна, поэтому уравнения решаются методом регуляризации Тихонова, а также методом параметрической фильтрации Винера. Методы и численные алгоритмы доведены до программ в системе MatLab. Приведены листинги программ и результаты обработки модельных и реальных данных. Применительно к задаче иконики изложены как известные методы восстановления изображений, так и разработанная автором методика под названием «усечение-размытие-поворот», а также метод сверхразрешения, быстрые алгоритмы устранения смазывания, спектральный способ оценки параметров искажения. Предложен новый тип шума — мультиполярный импульсный шум и способ его фильтрации. Изложена новая методика решения обратной задачи спектроскопии — способ обучения, или моделирования для случая непрерывного спектра и алгоритм интегральной аппроксимации для случая дискретного спектра. Изложение известных методов РКТ дополнено изложением малоизвестного метода Арсенина, основанного на приведении ИУ Радона к ИУ Фредгольма. При решении задач ИК-томографии использован оригинальный обобщенный метод квадратур решения сингулярных интегральных уравнений (СИУ).
Для студентов, бакалавров, магистрантов, аспирантов и преподавателей вузов, а также для научных сотрудников в областях фундаментальной, вычислительной и прикладной математики, физики и информатики (программирования).