Математические методы в биологии - все книги по дисциплине. Издательство Лань
В настоящем пособии излагаются основные принципы построения математических моделей динамики популяций и методы анализа устойчивости стационарных режимов в этих моделях. Изучаются классические непрерывные модели, описываемые системами обыкновенных дифференциальных уравнений. Рассматриваются возможные способы развития и обобщения классических подходов, основанные на применении разностных, дифференциально-разностных, интегральных, стохастических и других типов уравнений. Значительное внимание уделено задачам исследования динамики популяций с учетом их пространственного распределения. Пособие разработано в рамках курсов «Современные проблемы естествознания», «Математические модели процессов управления», «Устойчивость нелинейных систем» и предназначено для студентов вузов, обучающихся по направлениям «Прикладные математика и физика», «Прикладная математика и информатика», а также другим математическим и естественнонаучным направлениям и специальностям в области техники и технологий. Оно может быть полезно научным работникам, специализирующимся в области математического моделирования, теории управления и теории устойчивости.
Динамические процессы, как раздел прикладной математики, постоянно получают новые инструменты исследования, которые более адекватно отражают реальные зависимости. Таким новым инструментом за последние 50 лет стали обыкновенные дифференциальные уравнения с отклоняющимся аргументом, а точнее, их наиболее изученная часть — уравнения с последействием. Так как реакция практически любой системы запаздывает на возбуждающее воздействие, то и балансовые соотношения, на которых, как правило, базируется модель, включают состояние системы в различные моменты времени. Это приводит к динамическим моделям более сложной структуры, чем обыкновенные дифференциальные уравнения. Данный курс лекций направлен на освоение основной техники использования дифференциальных уравнений с последействием в задачах построения решений, исследования решений на устойчивость, поиска периодических решений и анализа управляемой динамики. В качестве прикладных моделей в курсе рассмотрены управление техническими объектами, биологические и экономические системы. Учебное пособие предназначено для студентов технических, инженерных и экономических специальностей.