Обыкновенные дифференциальные уравнения - все книги по дисциплине. Издательство Лань
Выгрузка списка книг доступна только авторизованным пользователям. Авторизоваться
Пособие предназначено для студентов, аспирантов и научных работников, специализирующихся в области математики и прикладной математики.
Книга предназначена студентам университетов и технических вузов, а также читателям, которые изучают теорию обыкновенных дифференциальных уравнений или используют их в своей практической деятельности.
Учебное пособие предназначено для студентов математических и физических специальностей.
Рассматриваются замкнутые системы, описываемые дифференциальными, интегро-дифференциальными и разностными уравнениями, а также в виде структурных схем. При решении соответствующих уравнений широко используется компьютерный пакет Maple. Исследуются проблемы устойчивости, управляемости и наблюдаемости, а также оптимального управления.
Предлагаемая читателям книга состоит их двух частей: в ее первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными производными.
Книга рассчитана на студентов технических вузов. Написанная простым и ясным языком, она представляется полезной также лицам, занимающимся математикой самостоятельно.
В учебном пособии излагаются положения теории и методы интегрирования дифференциальных уравнений Пфаффа на плоскости и в пространстве. Обычно уравнения Пфаффа на плоскости называют обыкновенными дифференциальными уравнениями первого порядка в симметричной форме. В отличие от общепринятого, подход к изложению материала основан на понимании решения как параметризованной кривой или поверхности.
Излагаются различные методы построения интегральных поверхностей, сопровождаемые рассмотрением примеров. Кроме того, пособие содержит представляющие значительный интерес исследования Л. Эйлера дифференциального уравнения Пфаффа с тремя переменными.
Пособие предназначено для студентов направлений подготовки и специальностей, входящих в УГСН: «Математика и механика», «Компьютерные и информационные науки», «Физика и астрономия», а также преподавателей физико-математических отделений университетов.