Математический анализ - все книги по дисциплине. Издательство Лань
Сохранить список:
Excel
Excel
Закрыть
Выгрузка списка книг доступна только авторизованным пользователям. Авторизоваться
Допущено Научно-методическим советом по математике Министерства образования и науки РФ в качестве учебного пособия для студентов вузов, обучающихся по направлениям: «Естественные науки и математика», «Технические науки», «Педагогические науки». Для студентов вузов технических спецей. Охватывает большинство вопросов программы по высшей математике для инженерно-технических специальностей вузов, в том числе дифференциальное исчисление функций одной переменной и его применение к исследованию функций; дифференциальное исчисление функций нескольких переменных; интегральное исчисление; двойные, тройные и криволинейные интегралы; теорию поля; дифференциальные уравнения; степенные ряды и ряды Фурье. Разобрано много примеров и задач из различных разделов механики и физики.
«Курс дифференциального и интегрального исчисления» является фундаментальным учебником по математическому анализу. Первое издание трехтомного «Курса...» вышло в 1948–1949 гг. Книга выдержала множество переизданий, переведена на различные иностранные языки. Отличается систематичностью и строгостью изложения, простым языком, подробными пояснениями и многочисленными примерами. Высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
В первом томе рассказывается о теории пределов, функции одной переменной, производных и дифференциалах, исследовании функции с помощью производных, функциях нескольких переменных, функциональных определителях и их приложениях, приложении дифференциального исчисления к геометрии, задаче распространения функций.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
В первом томе рассказывается о теории пределов, функции одной переменной, производных и дифференциалах, исследовании функции с помощью производных, функциях нескольких переменных, функциональных определителях и их приложениях, приложении дифференциального исчисления к геометрии, задаче распространения функций.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
«Курс дифференциального и интегрального исчисления» является фундаментальным учебником по математическому анализу. Первое издание трехтомного «Курса...» вышло в 1948–1949 гг. Книга выдержала множество переизданий, переведена на различные иностранные языки. Отличается систематичностью и строгостью изложения, простым языком, подробными пояснениями и многочисленными примерами. Высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
Второй том «Курса...» посвящен теории интеграла от функции одной вещественной переменной и теории рядов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера–Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
Второй том «Курса...» посвящен теории интеграла от функции одной вещественной переменной и теории рядов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера–Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
Данный трехтомник является фундаментальным учебником по математическому анализу. В первом томе «Курс дифференциального и интегрального исчисления» является фундаментальным учебником по математическому анализу. Первое издание трехтомного «Курса...» вышло в 1948–1949 гг. Книга выдержала множество переизданий, переведена на различные иностранные языки. Отличается систематичностью и строгостью изложения, простым языком, подробными пояснениями и многочисленными примерами. Высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
Третий том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
Третий том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
Учебник отличается систематическим и строгим изложением основ математического анализа. Материал излагается в логической последовательности и сопровождается примерами, облегчающими процесс усвоения теоретических положений курса. Автор уделяет особое внимание прикладному значению анализа как в самой математике, так и в смежных областях знания — в физике, механике и технике.
Учебник предназначен для студентов первого и второго курсов математических отделений вузов.
Учебник предназначен для студентов первого и второго курсов математических отделений вузов.
«Курс дифференциального и интегрального исчисления» является фундаментальным учебником по математическому анализу. Первое издание трехтомного «Курса...» вышло в 1948–1949 гг. Книга выдержала множество переизданий, переведена на различные иностранные языки. Отличается систематичностью и строгостью изложения, простым языком, подробными пояснениями и многочисленными примерами. Высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
В первом томе рассказывается о теории пределов, функции одной переменной, производных и дифференциалах, исследовании функции с помощью производных, функциях нескольких переменных, функциональных определителях и их приложениях, приложении дифференциального исчисления к геометрии, задаче распространения функций.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
В первом томе рассказывается о теории пределов, функции одной переменной, производных и дифференциалах, исследовании функции с помощью производных, функциях нескольких переменных, функциональных определителях и их приложениях, приложении дифференциального исчисления к геометрии, задаче распространения функций.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.
«Дифференциальное исчисление» Николая Николаевича Лузина является классическим учебным пособием, посвященным одной из основных тем математического анализа. Книга содержит как теоретические разделы, так и множество примеров и задач, которые помогут читателю более глубоко понять материал и научиться применять его на практике.
Рекомендовано для студентов вузов математических направлений подготовки.
Рекомендовано для студентов вузов математических направлений подготовки.
«Интегральное исчисление» Николая Николаевича Лузина является классическим учебным пособием, посвященным одной из основных тем математического анализа. Книга содержит как теоретические разделы, так и множество примеров и задач, которые помогут читателю более глубоко понять материал и научиться применять его на практике.
Рекомендовано для студентов вузов математических направлений подготовки.
Рекомендовано для студентов вузов математических направлений подготовки.
В книге рассмотрены следующие важнейшие разделы: функции нескольких переменных, двойные и тройные интегралы, криволинейные интегралы.
Учебник соответствует программам курсов высшей математики для студентов I курсов нематематических специальностей вузов и может выполнять функции как учебника, так и задачника по высшей математике.
Учебник соответствует программам курсов высшей математики для студентов I курсов нематематических специальностей вузов и может выполнять функции как учебника, так и задачника по высшей математике.
Содержание учебного пособия соответствует разделу «Ряды» программ по дисциплинам «Высшая математика» и «Математический анализ» для студентов экономических вузов. Излагаются основы теории числовых и функциональных рядов с примерами решения типовых задач. В каждом параграфе кроме подробного изложения теории и примеров приведены задачи для самостоятельного решения различного уровня трудности с ответами, в связи с чем пособие может быть полезно при самостоятельном изучении дисциплины. В последнем параграфе приведены примеры применения степенных рядов в финансовом анализе.
Закрыть
Сообщить о поступлении
Укажите ваш e-mail, и мы пришлем уведомление, как только книга
станет доступна для покупки.