Искусственные нейронные сети - все книги по дисциплине. Издательство Лань
Сохранить список:
Excel
Excel
Закрыть
Выгрузка списка книг доступна только авторизованным пользователям. Авторизоваться
Целью данного учебного пособия является представление современных технологий искусственного интеллекта и их применение в процессе обучения английскому языку. В первой главе освещаются основные принципы и методы искусственного интеллекта, а также их роль в современном образовании. Во второй главе рассматривается практическое применение технологий искусственного интеллекта в обучении английскому языку, включая программы, приложения, их преимущества и ограничения. В третьей главе анализируются тенденции развития технологий искусственного интеллекта в образовании и их потенциал в контексте изучения английского языка. Четвертая глава посвящена перспективам развития и использования технологий искусственного интеллекта в обучении английскому языку, а также рекомендациям для образовательных учреждений и преподавателей.
Учебное пособие предназначено для изучения дисциплин, связанных с применением искусственного интеллекта в образовании, а также для студентов, преподавателей и специалистов в области образования и языкознания.
Учебное пособие предназначено для изучения дисциплин, связанных с применением искусственного интеллекта в образовании, а также для студентов, преподавателей и специалистов в области образования и языкознания.
В данном учебнике автор предлагает глубокое и практически ориентированное изучение искусственного интеллекта (ИИ), делая его доступным для студентов, преподавателей и профессионалов. Это издание станет ключевым ресурсом для вузов, стремящихся расширить и углубить свои образовательные программы в области ИИ, а также повысить свой академический престиж.
В учебнике приведены основные теоретические и практические сведения по разработке, обучению и применению искусственных нейронных сетей с использованием среды MatLab.Учебник предназначен для студентов магистратуры направления «Информатика и вычислительная техника» и может быть полезен студентам других специальностей при изучении нейросетевых технологий, а также для слушателей курсов повышения квалификации и профессиональной переподготовки.
Создание, накопление, обработка и использование информации в мире составляет мощную информационную среду. Она занимает ведущее значение в различных областях человеческой деятельности. Монография представляет начальный шаг выделения частных свойств указанного сложного процесса, их численного изучения с помощью предложенных методов и моделей инженерного характера. На наш взгляд, именно такие методы и модели составляют основу обработки больших данных в сфере решения научно-исследовательских задач.
Рассматриваются и усовершенствуются классические методы и модели исследования сложных систем, основные законы (Меткалфа, Амдала, Густавсона–Барсиса, Гроша) взаимодействия сетевых структур, модели и методы оценивания их эффективности и качества, а также модели и методы исследования сложных систем с нечеткими параметрами. Рассматриваются современные инструментальные средства и технологии интеллектуальной обработки больших данных.
Представлены оригинальные результаты, касающиеся решения задач: информационного взаимодействия, контроля состояния, оценивания надежности и предсказания событий для сложных систем; оценивания эффективности, качества и производительности сетевых структур, а также оценивания и обеспечения их надежности; расчета функций принадлежности с нечётким аргументом и коэффициентом, решения нечётких нелинейных уравнений, поиска условного экстремума при нечётком ограничении, решения дифференциальных уравнений с нечёткими коэффициентами.
Дан вариант обработки больших данных на основе совместного использования инструментальной системы Hadoop под управлением Windows и сверточной нейронной сети при решении задачи распознавания рукописных цифр. Обучение нейронной сети проводится на основе набора данных MNIST образцов написания рукописных цифр. Построение сверточной нейронной сети производится с помощью системы Neural Network Toolboox.
Рекомендуется преподавателям и научным сотрудникам, а также магистрантам и аспирантам и при исследовании сложных систем и технологий обработки больших данных.
Рассматриваются и усовершенствуются классические методы и модели исследования сложных систем, основные законы (Меткалфа, Амдала, Густавсона–Барсиса, Гроша) взаимодействия сетевых структур, модели и методы оценивания их эффективности и качества, а также модели и методы исследования сложных систем с нечеткими параметрами. Рассматриваются современные инструментальные средства и технологии интеллектуальной обработки больших данных.
Представлены оригинальные результаты, касающиеся решения задач: информационного взаимодействия, контроля состояния, оценивания надежности и предсказания событий для сложных систем; оценивания эффективности, качества и производительности сетевых структур, а также оценивания и обеспечения их надежности; расчета функций принадлежности с нечётким аргументом и коэффициентом, решения нечётких нелинейных уравнений, поиска условного экстремума при нечётком ограничении, решения дифференциальных уравнений с нечёткими коэффициентами.
Дан вариант обработки больших данных на основе совместного использования инструментальной системы Hadoop под управлением Windows и сверточной нейронной сети при решении задачи распознавания рукописных цифр. Обучение нейронной сети проводится на основе набора данных MNIST образцов написания рукописных цифр. Построение сверточной нейронной сети производится с помощью системы Neural Network Toolboox.
Рекомендуется преподавателям и научным сотрудникам, а также магистрантам и аспирантам и при исследовании сложных систем и технологий обработки больших данных.
В книге рассмотрены теоретические основы моделирования искусственных нейронных сетей различной архитектуры. Приведены алгоритмы обучения однослойных и многослойных сетей прямого распространения, самоорганизующихся и рекуррентных сетей. Рассмотрено моделирование многоагентных систем на основе эволюционирующих нейронных сетей. Приводятся оригинальные методики визуализации внутреннего состояния обученной нейронной сети и решения задач классификации, категоризации, прогнозирования, восстановления зашумленной информации. Даны методологические основы проектирования нейросетевых модулей решения задач в виде компьютерных приложений. Приведены описания структур, интерфейсов и компьютерные коды основных блоков нейросетевых приложений. Описаны методы комбинирования градиентных и стохастических алгоритмов обучения для повышения эффективности решения практических задач. Приводятся оригинальные методики решения задач распознавания образов, прогнозирования курсов валют, задач медицинской диагностики. Рассмотрены методы и способы оценки эффективности разработанных нейросетевых моделей.
Издание может быть использовано в курсах «Проектирование интеллектуальных систем», «Компьютерные технологии в медико-биологической практике», «Автоматизация обработки медицинской информации», «Управление в биотехнических системах». Может быть полезно также для научных работников, специализирующихся в области разработки автоматизированных систем искусственного интеллекта и когнитивного моделирования процессов принятия решений.
Издание может быть использовано в курсах «Проектирование интеллектуальных систем», «Компьютерные технологии в медико-биологической практике», «Автоматизация обработки медицинской информации», «Управление в биотехнических системах». Может быть полезно также для научных работников, специализирующихся в области разработки автоматизированных систем искусственного интеллекта и когнитивного моделирования процессов принятия решений.