Дифференциальные уравнения и динамические системы - все книги по дисциплине. Издательство Лань
Выгрузка списка книг доступна только авторизованным пользователям. Авторизоваться
Книга предназначена студентам университетов и технических вузов, а также читателям, которые изучают теорию обыкновенных дифференциальных уравнений или используют их в своей практической деятельности.
Учебное пособие предназначено для студентов математических и физических специальностей.
Рассматриваются замкнутые системы, описываемые дифференциальными, интегро-дифференциальными и разностными уравнениями, а также в виде структурных схем. При решении соответствующих уравнений широко используется компьютерный пакет Maple. Исследуются проблемы устойчивости, управляемости и наблюдаемости, а также оптимального управления.
Предлагаемая читателям книга состоит их двух частей: в ее первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными производными.
Книга рассчитана на студентов технических вузов. Написанная простым и ясным языком, она представляется полезной также лицам, занимающимся математикой самостоятельно.
В учебном пособии излагаются положения теории и методы интегрирования дифференциальных уравнений Пфаффа на плоскости и в пространстве. Обычно уравнения Пфаффа на плоскости называют обыкновенными дифференциальными уравнениями первого порядка в симметричной форме. В отличие от общепринятого, подход к изложению материала основан на понимании решения как параметризованной кривой или поверхности.
Излагаются различные методы построения интегральных поверхностей, сопровождаемые рассмотрением примеров. Кроме того, пособие содержит представляющие значительный интерес исследования Л. Эйлера дифференциального уравнения Пфаффа с тремя переменными.
Пособие предназначено для студентов направлений подготовки и специальностей, входящих в УГСН: «Математика и механика», «Компьютерные и информационные науки», «Физика и астрономия», а также преподавателей физико-математических отделений университетов.
Учебное пособие предназначено для студентов, обучающихся по направлению «Прикладные математика и физика» и другим направлениям и специальностям в области естественных и математических наук, техники и технологии. Пособие также может быть полезно магистрантам и преподавателям и использовано при изучении дисциплин, связанных с решением дифференциальных уравнений в самых разнообразных отраслях прикладной науки. Оно также будет полезно при подготовке к семинарам, факультативным занятиям и при самостоятельном изучении вопросов данной тематики. Материал учебного пособия может быть широко использован на лекциях и практических занятиях по курсам дифференциальных уравнений математической физики и группового анализа.
Учебное пособие содержит подробное изложение основных вопросов курсов «Обыкновенные дифференциальные уравнения», «Операционное исчисление», «Ряды» и «Вариационное исчисление», соответствующее требованиям к минимуму основной обязательной программы по подготовке дипломированных специалистов.
Рассматриваются методы решения дифференциальных уравнений (ДУ) первого и второго порядков и, в частности, ДУ Эйлера. Теория проиллюстрирована вспомогательными рисунками и решением типовых примеров. Даны классические методы решения ДУ первого и второго порядков. Рассмотрены решения ДУ, заданных неявным образом. В пособии рассматриваются также способы получения особых решений ДУ в виде Р — дискриминантных и С — дискриминантных кривых. Большое внимание уделяется особым решениям ДУ, которые интерпретируются как кривые, огибающие семейство кривых обыкновенных решений.
Рассмотрены вопросы устойчивости решений ДУ по Ляпунову. Даны также приближенные методы решения ДУ с начальными и краевыми условиями, в том числе в прикладной программе MathCAD. Две лекции посвящены изложению операционного метода решения линейных ДУ и линейных систем ДУ с постоянными коэффициентами при начальных условиях, что находит широкое применение в экономических задачах и задачах механики, радиотехники и электротехники.
Четыре лекции посвящены изложению теории рядов. Достаточно подробно дана теория числовых и функциональных рядов. Рассмотрены приложения теории функциональных рядов к приближенному решению ДУ. Даны элементы вариационного исчисления для получения экстремалей некоторых функционалов методом решения ДУ Эйлера.
Кроме того, данное пособие снабжено большим набором индивидуальных заданий для самостоятельной работы студентов в виде практических занятий и домашних контрольных, что должно повысить интенсивность занятий и способствовать успешному усвоению студентами данного материала.
Учебное пособие предназначено для студентов вузов всех форм обучения по направлениям подготовки, входящим в УГС: «Экономика и управление», «Техника и технология строительства», «Электроника, радиотехника и системы связи», «Фотоника, приборостроение, оптические и биотехнические системы и технологии», «Электро- и теплотехника», «Машиностроение», «Физико-технические науки и технологии», и другим инженерно-техническим направлениям подготовки и специальностям.
Изложение соответствует программам математической подготовки бакалавров и специалистов в области экономики, входящей в направление «Науки о природе». Экономическая направленность учебника определяется рассмотренными приложениями математики к решению конкретных экономических задач. Разобраны решения типовых задач. Даны условия задач для самостоятельного решения и задания для выполнения расчетных работ. Приведены вопросы для самопроверки усвоения материала и типовые контрольные работы.
Учебник предназначен для студентов экономических специальностей (бакалавров и специалистов) различных форм обучения, в частности для самостоятельного овладения материалом. Методические разработки практических занятий будут полезны преподавателям математики.